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1 Introduction

We consider the nonsmooth convex program, defined as
min {/(x) | g(x) < 0}, (NSCopt)

where f : X — R is a real-valued convex function and is possibly nons-
mooth (but smoothable), X C R" is a closed and convex set, and g(x) =
(g1(x),92(X), .., gm(x)) T that each g; : X — R,i = 1,2,--- ,m is a possi-
bly complicated nonsmooth (but smoothable) convex function. Generally, the
presence of such constraints precludes usage of projection-based methods to en-
sure feasibility of iterates. In deterministic regimes, a host of approaches have
been employed for contending with complicated constraints, a subset of which
include sequential quadratic programming [15,39], interior point methods [7],
and augmented Lagrangian (AL) schemes [34,35]. Of these, AL schemes have
proven to be enormously influential in the context of scientific computing [1,8,
11], and more specifically in nonlinear programming in the form of solvers such
as minos [25,13] and lancelot [9] as well as more refined techniques [14,12].
There has been a significant interest in deriving overall complexity bounds [21,
40] in convex regimes when the Lagrangian subproblem is solved via a first-
order method. However, such bounds tend to be poor when constraints are
possibly nonsmooth; e.g. standard AL schemes display complexity guarantees
of O(e75) for computing an e-optimal solution in such settings (see Table 1).

Gap and Relevance: Existing ALM schemes for nonlinear and non-
smooth convex constraints display poor overall complexity in inner
(subgradient) steps. Such models are relevant when addressing compo-
sitional and risk constraints.

1.1. Related work. Before proceeding, we discuss related prior research. (a)
Augmented Lagrangian Methods. The augmented Lagrangian method (ALM)
was proposed by Hestenes [16] and Powell [33] with a comprehensive rate
analysis provided by Rockafellar [34]. The ALM framework relies on solving a
sequence of unconstrained (or relaxed) problems, requiring the minimization
of a suitably defined augmented Lagrangian function £,(x, ) in x, where p
and A denote the penalty parameter and the Lagrange multiplier associated
with g, respectively. In high-dimensional settings, the Lagrangian subproblems
cannot be solved exactly, leading to the development of variants that allow for
inexact resolution of the Lagrangian subproblem. Kang et al. [18] presented
an inexact accelerated ALM for strongly convex optimization with linear con-
straints at a rate of O(1/k?), where k is the iteration counter. Non-ergodic
convergence guarantees were provided in [21,22], where either smoothness of
f [21] or a composite structure [22] is assumed. Overall complexity guaran-
tees were first provided by Lan and Monteiro [21], Aybat and Iyengar [4],
Necoara et al. [26] and most recently Lu and Zhou [23], where the latter three
references allowed for conic settings. In fact, Lu and Zhou [23] showed that
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Table 1 ALM for deterministic convex optimization

in conic convex settings with smooth nonlinear constraints, by introducing
a regularization, the overall complexity is improved to O (6*1 ln(sfl)) with
a geometrically increasing penalty parameter. Nedelcu et al. [27] considered
convex and strongly convex regimes. Notably, Necoara et al. [26] derived an
overall complexity of O(e~2) and O(e~?!) for smooth settings under convex
and strongly convex objective f, respectively. More recently, Xu [40] consid-
ered nonlinear but smooth regimes in proposing an inexact ALM (under a
suitable boundedness requirement) with complexity guarantees of O(e~1) (un-
der convex f) and O(e~2 log(e~1)) (under strongly convex f), respectively.
Table 1 compares existing complexity guarantees for AL schemes with both
our schemes in convex (Sm-AL) and strongly convex settings (Sm-AL(S))
and standard ALM (N-AL), where @) suppresses logarithmic terms.

(b) Smoothing techniques. While subgradient methods have proven effective
in addressing nonsmooth convex objectives [32], smoothing techniques [5] rep-
resent an efficient avenue for a subclass of nonsmooth problems. Moreau [24]
introduced the (Moreau)-smoothing f,, of a convex function f, with parameter
7, defined as

fa() 2 inf { fw) + §fu -2}

Nesterov [30] employed a fixed smoothing parameter in developing a smoothing
framework for nonsmooth convex optimization problems with a rate of O(e 1),
an improvement over O(e~2) attainable by subgradient methods. In related
work, Aybat and Iyengar [3] designed a smoothed penalty method for obtain e-
optimal solutions for /;-minimization problems with linear equality constraints
in O (5_3/2) steps. Subsequently, Beck and Teboulle [6] defined an («, f3)-
smoothing for a nonsmooth convex f satisfying the following two conditions
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(i) fr(x) < f(x) < fy(x)+np for all x and (ii) f, is («/n)-smooth. For
instance, f(x) = max{0,x} has a smoothing f,, defined as f,(x) = nlog(1 +
exp(%)) — nlog 2. Analogous approaches have been employed for addressing
deterministic [10] and stochastic [17] convex optimization problems.

1.2. Applications. We present three applications where nonsmooth convex
constraints emerge. (a) Regression. Lasso regression [36] is a model widely used
in variable selection in statistical learning. Assuming that the dataset consists
of {yi, X;}¥,, where (y;, X;) denotes the outcome and feature vector for ith
instance. Then an elastic-net model [43] can be articulated as follows where
Ci; > 0.

min {ly = XBI3 | A =a)llBll +alBll3 <Cr}. (1)

This reduces to standard Lasso [36] when o = 0 and is generalizable to fused
Lasso [37] by adding an additional nonsmooth constraint 3°%_, [3; — Bj-1] <
Cy, where Cy > 0. (b) Classification. In statistical learning, the Neyman-
Pearson (NP) classification [38] is designed to minimize the type II error while
maintaining type I error below a user-specified level a. Consider a labeled
training dataset {a;}}Y.; where the positive and negative set are represented

by {a(l)}l ¢ and {a( 1)} 7, respectively. The empirical NP classification
problem is given by [42] as follows

N, N
) S e(1xTal YY) | 2P e(—1,xTal®
min { — ( ) = ( ) —a<0,,

x N1y N

where £(e) denotes the loss function. Choices of the loss function include nons-
mooth variants such as mean absolute error (MAE) and hinge loss. (¢) Multiple
Kernel learning. Multiple kernel learning (MKL) employs a predefined set of
kernels to learn an optimal linear or nonlinear combination of these kernels,
defined as follows [19].

M
1y lels 4 oyie,

m=1

min
w,b,(0,£)>0

M
subject to  y; Z W) m (X +b> >1-&, i=1,---.m
m=1
lely < 1,
where ;(e),i = 1,...,m are predefined kernels, 6 is a vector of coefficients
for each kernel, w is a weight vector for the primal model for learning with
multiple kernels.
1.3. Contributions. We present a smoothed AL framework (Sm-AL) where
the nonsmooth (but smoothable) objective/constraints are smoothed with a
diminishing smoothing parameter n;. Consequently, the AL subproblem (with
penalty parameter py) is proven to be O(pg/ni)-smooth, allowing for (acceler-
ated) computation of an ex-exact solution in finite time. By a careful selection
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of the sequences {ex,n, pr.}, we derive rate and complexity guarantees. Our
contributions are formalized next.

(i) In Section 2, we derive an ex-ante bound on the optimal multiplier set of
the n-smoothed problem. This result, which is of independent interest, allows
for claiming that a saddle-point of the n-smoothed problem is an O(n)-saddle
point of the original problem, allowing for deriving fixed smoothing schemes.
(ii) In Section 3, we establish a dual suboptimality rate of O(k~!) and pri-
mal infeasibility rate of O(k~1/2) (constant penalty) while geometric rates of
O(1/pg) on primal infeasibility and suboptimality are derived under geometri-
cally increasing penalty parameters. In Section 4, by employing an accelerated
gradient framework for resolving the 7ni-smoothed AL subproblem, the over-
all complexities of (Sm-AL) in terms of inner projection steps for obtaining
an e-optimal solution are proven to be O(e~(3+9) (constant penalty) and
O(e3/?) (geometrically increasing penalty). Analogous bounds in strongly
convex settings are given by O(e~(2t9) for constant and O(e~') for geo-
metrically increasing penalty parameters. Similar complexity guarantees are
available with a fixed smoothing parameter, akin to those developed in [30, 6]
for convex programs with nonsmooth objectives. (iii) Preliminary numerical
results are provided in Section 5 before concluding in Section 6.

2 A Smoothed Augmented Lagrangian Framework

In this section, we first provide some background and then analyze the smoothed
problem, ending with a relation between a saddle-point of the n-smoothed
problem and an n-approximate saddle-point of the original problem.

2.1 Background and Assumptions

Corresponding to problem (NSCopt), we may define the Lagrangian function
Lo as follows.

fx)+ATg(x), A >0
—00. otherwise

Lo(x,)\) = {

This allows for denoting the set of minimizers of Ly(e, A) by A*(A), the dual
function by Dy(A), and the dual solution set by A*, each of which is defined
next.

* A : A * A
X*(A) = arg min Lo(x,A), Do(N) = ):g{ Lo(x,A), and A* = argrilzaé(Do()\).

By adding a slack variable v € R™, we may recast (NSCopt) as follows.

ccmin o )

subject to g(x) +v =0, (N
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where A € R™ denotes the Lagrange multiplier associated with the constraint
g(x)+v = 0. Then the augmented Lagrangian function, denoted by £,, where
p denotes the penalty parameter, is defined as

Ly(x,A) = Inin F)+AT(g(x) +v) + 5 1 g(0) + v |-

If d_(u) £ ilg |lu —v]|| and I [u] denotes the Euclidean projection of u onto
vERT
R, then the AL function £, and its gradient can be expressed as follows [34].

Lemma 1 Consider the function £, for p > 0, x € X and A > 0. Then

A S 2
£otx) = (#0945 (4 (3 +909)) - 10°)
and VaL,(x,\) = (f% + 11 (% + g(x))) .
Similarly, the augmented dual function D,, defined as
A .
Dy(N) £ inf £,(x, ), (2)

can be shown to be differentiable [34].

Lemma 2 Consider the function D, defined as (2). Then D, is a C' and
concave function over R™ and is the Moreau envelope of Dy, defined as

D,(\) = max [Do(u) — L~ AH?} and VD, (%) 2 L (g,(1) — X),

u€R™
where g,(\) £ argmax [Do(u) - ﬁ”u - )\HQ} .
u

Our interest lies in nonsmooth, albeit smoothable, convex functions, de-
fined next.

Definition 1 A closed, proper, and convezr function h : R® — R is (o, 3)
smoothable if for any n > 0, there exists a convexr differentiable function h,
such that

IN

[ Vachny(x1) = Vichy(x2) ||
hy(x) < h(x) < hy(x)+npB, Vx € R™.

Sllx1 = x2fl,  Vxi,x2 € R",

In fact, one may be faced by compositional convex constraints in which
the layers may be nonsmooth. In such instances, under suitable conditions,
smoothability of the layers implies smoothability of the compositional func-
tion but we postpone such avenues for future work. We leverage smoothability
assumptions in [6] to state our basic assumptions on the objective and con-
straint functions. In addition, we impose both compactness requirements on
X as well as a Slater regularity condition.
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Assumption 21.

(a) The function f and the constraint functions g1, gz, - , gm are convex and
(a, B)-smoothable real-valued functions.

(b) There exists a point (x*, A*) satisfying the KKT conditions.

(¢) The set X C R™ is a convex and compact set.

(d) (Slater) There exists a vector X € X such that g;(X) < 0 for ¢ =
1,2,...,m.

Condition (d) allows for bounding the set of optimal dual variables (cf. [20]).
Throughout the rest of this paper, we assume that Assumption 21 holds.

2.2 Analysis of Smoothed Lagrangians

We now analyze the smoothed Lagrangian framework where f and ¢ are ap-
proximated by smoothings f, and g,, where the latter is a vector function
with components g1 4, , gm,n- The resulting smoothed Lagrangian function
L, and the smoothed dual function D, () are defined as

fa(x) +ATgy(x), A=0
—00, otherwise

Lyo(x, ) £ { } and D, o(\) £ inf L5,0(x, ).

Then the smoothed augmented Lagrangian function £, , is defined as

Lp(,A) £ it [ £ () AT (99(%) +V) + §llgn(x) + vI*]
= 100+ 4 (4 (3 +a0)) — BIAI

We may now define D,, , and ¢y, , as D, ,(A) = max,[ Dy o(u) — 2—1p||u - A1?]
and V2D, ,(\) = % (@y.p(A) = A), where g, ,(\) £ argmax, [ D, o(u) — Ql—p||uf
Al?]. We now relate D, to D, , and ¢, to gy, in the next lemma.

Lemma 3 For any A € R7", the following hold:
(i) [Lo(x,A) = Ly,o(x,A)] < n(l|Allm 4 1)5;

(i) [Dy,0(A) = Do(M)] < n([|A[m + 1)5;
(ii)) | Dy, p (A) = Dp(A)] < n([[Allm +1)53;

Proof. (i) Since for any x € X, we have that

|f(x) = fn(x)| < nB (3)
19i(x) — gi.n(%)] nB, i=1,2,...,m. (4)

IAINA

Consequently, for any A > 0, by adding (3) to A; x (4) fori=1,--- ,m,

[Lo(%,A) = Ly 00, A)] < n([|A[m +1)8.
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(ii) Suppose x € arg miﬁ Lo(x, ) and X, € arg rrg/_r’} Ly 0(x, ). It follows that
XE X

D()()\) = ,C(]()_(, )\) and DW»O()\) = ,Cny()(}_(n, )\) Let C = (||)\||m + ].)ﬂ
Do()\) = ,Co(i, )\) § EO(XTN )\) § ‘CTLO(XTN )\) + 770 = Dn,O()‘) + 770
Similarly, we have that
Dnto()\) = En,o()_(n, )\) < En,o()_(, )\) < [,0()_(, /\) +nC = Do()\) +nC.

This implies that for any A € R, | D, o(A) — Do(A)| < nC.
(iii) By the prior definitions,

1
D, p(A) = max [Dn’o(u) - %Hu - )\||2] and

u€R™

u€ER™

D,()\) = max [Do(u) - %Hu - )\||2] .

For any A > 0, let uq € argmaxD,, ,(\) and us € argmax D, (). Then

1 1
Dy () = Pp3) = | Do) - %n NP - [Dom)%nuxﬂ
— sz | Dol — o = N*| [ Poua) = o = A1 |
1
< x| Dol = oo = A | - [Do w) = oo =
Lemma 3(ii)
<[ Dyo(u1) — Do(u1)| nC

Similarly, D,(X) — D, ,(A) < nC, implying the result.

We now consider the smoothed counterpart of (NSCopt), defined as

min { f,(x) | gy(x) < 0}. (NSCopty)

xEX

Under a Slater regularity condition, the set of optimal multipliers is bounded

(cf. [20]). Similar bounds are derived for the n-smoothed problem.

Proposition 21. (a) For any > 0, there exists X € X such that g,(X)
(b) The set of optimal multipliers A* for (NSCopt) is bounded as per

A* C {/\20

m
Z/\i < b,\}where by > M

min; {—g;(%X)}"
i=1

< 0.
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(c) For any n > 0, the set of optimal multipliers Ay for (NSCopt,) is bounded
as per

A, C By, = {)\20 Z)\i < b%n} where by , > S =Di+n(B+C7)

min; {—g; (%)}
i=1
Proof. (a) By Assumption 21(d), there exists a vector X € X such that g(x) <

0, implying that g,(X) < 0 by the property of smoothability.
(b) By the Slater regularity condition, we directly conclude from [20] that

< _f®=-Dg _
{)\>0 i S i - qJ(X)}}'

(c) Similarly, Ay, the dual optimal solution set, is bounded as follows.

. f2(0)-D; F®)+n8-D;
A’Y < {A>0 | Z)‘i — min;{— gjno(x)}} {A>O | Z)\’ — min;{— g],](i)n} }

Recall that —g; ,(X) > —g;(X) for j = 1,--- , m. Furthermore, min{—g, ,(X)} >
J
min{—g;(x)}. It follows from (b) that
j

(Optimality of A}) (Lemma 3(ii))

—Doﬂ,()\:‘]) < —Do,n(A") < —Do(A*) + n(mby + 1)8.

Consequently, if D, = Do,y(Ay), Dg = 2 Do(A")
) m F(®)+nB=D5
A"l g {)\ 2 0 | z;)\l S mlnj{ g7n(x } {

" < [E-Din(3+CY)
{)\ZO | Z)\z > mlnjf g; (%)} } cB

and C* £ (mby + 1)4, then

A < min; {—g; (%)}

f(X)+nB— Do n }

Hl>

r—/H“MS

N
A

Z/\ <bM,}.

O

We now relate a saddle-point (xj,A;) of (NSCopt,) to an n-saddle-point
(x*,\*) of (NSCopt), where the bound on the multipliers for (NScopt) and
(NSCopt,) are denoted by by and by, , respectively.

Theorem 21. Let (x*,\*) and (x;, \}) represent saddle points of (NSCopt)
and (NSCopt,), respectively.

(a) Suppose x; € A is a feasible solution of (NSCopt,). Then x; is an
nB||1||-feasible of (NSCopt), i.e. d—(g(x;)) < nB|1].

(b) Suppose (xj,A;) is a saddle-point of (NSCopt;). Then (x; /\*) is an

UERAY]
213(1 + mby ,)-saddle-point of (NSCopt), i.e. for all (x,\) € & x RT

L(x7, A\)—nB(1+mmax {bx, [Al}) < L(x,X;) < L(x, A2)+nﬂ(1+mbx,n)~

n) '
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Proof. (a) Suppose x;, € X' is a feasible solution of (NSCopt,,). Then g, (x})

0. Furthermore, g(x;) < g,(x;) + 781 < np1, implying that d_(g(x}))

n
nB[I1].
(b) The dual optimal set Aj is nonempty and bounded as per Lemma 21. Let

(x;, Ay;) be the saddle point of Ly(-,-). We have
L, 05) = f(x3) + (W) Tg(x3) < £ (35) + 18+ (A;) T gy (x3) + 1bxnBI1]
= L, (x5, ;) +nB(1 + baym) < Ly(x, Ay) +nB(1+ by,m) for all x € X
— L)) F2(0) — £+ ()T (90(%) — g(x)) + 1B(L+ by ym) for all x € X
< L(x,A) +nB(1 + by ym) for all x € X

The final result follows through the following sequence of inequalities that

L(x, ) = f0x) + () g6xn) = fi () + (00T (90(x5)
= L(X5,AD) > L,(x5, A) for all A € RY

= LX), N) + fo(x5) — F(x5) + AT (gy(x}) — g(x};)) for all X € R
> L(x;,A) = nB(1 +mmax {by,, [[AI}) VA eRT.

O
The following Lemma 4 shows the relation between ¢, ,(e) and g,(e).
Lemma 4 For any A € R, the following hold:
() llgn.,(A) = g (M < V/Apn([AIm + Com) B;
.. m+Co,
() V2D p(A) = VaD, (M| = Lllgn o () — g, (V)| < 4/ UM,
Proof. (i) By definition, we have that
— — Ly = A2
4p(V) = angmaxx (Do(u) — 2 u— M) (5)
— ; 1 2) _
= argurg]g; (—Do(u) + %Hu = Al ) = prox_Dmp()\).
Similarly, g ,(A) = prox_p,  ,(A). (6)

By strong convexity of —Dg(e) + ﬁ” e —)\||2 and —D,, o(e) + %H e —)\||? and
by noting that ¢,(\) and g¢;,,(A) uniquely minimize (5) and (6), respectively,

Do) + Ellanp (V) = A2 = ~Do(g, () + £ g, (A) — A1
+ 25 lane(N) = (N1,
~Di0(ap(N) + 351l65(\) = AI* = =Dy0(29,p(N)) + 55 llan,p (A) = AlI”
+ 15 0.0 (A) = g, (V1%
Consequently, by summing the two inequalities above, we have that
35 120.0(N) = 2 (M)I* < Dy 0(dn,6 (V) = Poldn,p(A)) + Po(gp(A)) = Dio(ap(N))
<1 (lan,(Mlm +1) B+ ([lgp(A)Im +1) 5.
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By definitions of A; and \*, we have g, ,(\;) = A, and g,(\*) = ™.
Therefore, we have the following bounds on ||g,,,(A)|| and [/g,(A)]].

@n,p (M = 1lan,o(A) = @n.p(A3) + A0l < llan,p(A) = an,p (A A
qn,p(®) is non-expansive

<A =250 AL < A+ 2[5

Similarly, ||g,(A)|| = |lgp(X) — go(A*) + X*|| < ||A[[4+2[|A*||. Therefore, It follows
that for any A > 0,

35llan.p(N) = as(MI* < 0B (2 +m (llan., (M + llg, (M)
< 0B (24 m 2+ 2(bx, +02)))
=283 (Cm + m([IA]]))

where C,,, £ 1 + m(bx,, + bx) is a constant.
(ii) By recalling the definitions of V3D, (A) and V3D, ,(A) from Lemma 2,

IV5Dy0(A) = VoDl = Llgnn(A) — qo(V)]| < o/ 202 mtCm)B

We now formally state the smoothed AL scheme. The traditional ALM is
reliant on solving the subproblem exactly or eg-inexactly at epoch k. However,
in regimes with nonsmooth constraints, the AL subproblem is nonsmooth,
precluding the usage of accelerated gradient methods, leading to far poorer
performance. Our proposed scheme solves a sequence of 7;-smoothed problems
solved within an error tolerance of eknz where b > 0. A formal statement of
the scheme is provided next.

O

Smoothed augmented Lagrangian scheme (Sm-AL).
Given xg, A\g, K > 0, and sequences {p, €x,ni}. For k=1,--- | K, we
have

[1] Xk+1 satisfies {‘Cﬁk,Pk (XkJrlv >‘k) - Dle,Pk (Ak) < 6]&72} )
[2] >‘k+1 = \p + pkvkﬁﬂkvﬁk (Xk+1, >\k)

The Lagrange multiplier update can be expressed as follows [2].

Lemma 5 Consider the smoothed augmented Lagrangian scheme (Sm-AL).
Then for any k > 0, step [2] is equivalent to the following equation.

Mot = Iy [ Mg + prgyy, (Xkt1) ] -

The next assumption holds for parameter sequences employed in (Sm-AL).
Unless mentioned otherwise, Assumptions 21 and 22 hold throughout.
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Assumption 22. The positive sequences {eg, N, pk}le satisfy

(1) Yopey v/ prernt < oo; (i) Yope /PrTK < 00, where b > 0.

3 Rate Analysis

In this section, we analyze the rate of convergence for (Sm-AL). In 3.1, we
provide some preliminaries and then derive rate statements for constant and
increasing penalties in Subsections 3.2 and 3.3, respectively.

3.1 Preliminary results

We begin by recalling the following bound, an extension of the result proved
in [34] Lemma 4.3.

Lemma 6 Let {xj, \x} be generated by (Sm-AL). For any k > 0, suppose
Xp41 satisfies L, o (Xig1, Ak) — Dy (M) < exny where b > 0. Then for k > 0

€ b
IV ALy o (g1, M) = VaDy, o (M) [|* < 20 (7)

-  PE

By choosing appropriate sequences {ex, 1k, pk }, {(2€x1?)/px. } is diminishing
(see Lemma 6). We now derive a uniform bound on the sequence {A}.

Lemma 7 (Bound on )\;) Consider {\;} generated by (Sm-AL).
(a) {A\x} is a convergent sequence. (b) For any K, we have

Y RN ESY (\/ 2pnewn, + 2/ mpr (|3 [lm + Cm)ﬂ) +1120 = X*[[ £ Bi.
k=0

Proof. By adding and subtracting g,, . (Ak), Gny..px (A*), @p,, (A*), it follows that

Akt = A< A1 = @ i) g, pn (Ak) = @y (A
F lgmon (A7) = @i A 4 [[gpi (A7) = A" -
—_———

=0

Next, we derive a bound on || Ax41 — @ny.p (Ax)|| that

H>‘k+1 ~ i ,pre ()‘k)H = H)‘k + Pk (V)\'C"]k,l)k (Xkt1, )\k:)) — Qi pi ()‘k)H
= Ak + ok (VAL pp (X1, Ak)) = peVaDyy o (k) — Ar|

Lem. 6
<k IVALyy e (Kig1, M) = VDo M)l < v/ 20k€xm).

From Lemma 3, ||y, (A*) = g X < 2¢/pni ([N [fm + Cr)B, implying
that

A1 = A<y 20ewmp, + 28/ prnn (A [l + C) B + 1Mk = X*[l. - (8)
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By leveraging the deterministic form of the Robbins-Siegmund Lemma [32], if
v/ 20k€xnt +2+/ preni (JA*[m + Cy,) B is summable, then {||A\x —A*||} converges
to a nonnegative value. It follows that {\;} is convergent.

(b) Summing (8) from k£ =0,--- , K — 1, we obtain that

I =1 < 3 (20t + 20/mpnd T+ CodB ) + [ = X
(Vareutt + 23/prl T+ Col8) + o = X7l 2 B,

=

=~
Il
=]

<

M8

ol
Il

0

3.2 Rate analysis under constant py

Next, we derive rate statements for the dual sub-optimality and primal infea-
sibility when py = p for all k. Our first result relies on the observation that
the augmented dual function D, has the same set of optimal solutions (and
supremum) as the original dual function Dy (see [34, Th. 3.2]).

Proposition 31 [Dual sub-optimality]. Consider the sequence {\;} gen-
erated by (Sm-AL), where p; = p for every k > 0. If By, By are constants,

_ K—1 .
then the following holds for Ax £ M1 and for any K > 0,

KK — -
* 3\ * B 2¢p B
FF=Do(Ak) < g ldo = NIP+ B Y YRR 4 B Y e <O (%)
k=0 k=0

Proof. Recall that D,, ,(\) is the Moreau envelope of D, . Consequently,
VD, p is %—Lipschitz. We then have

_an,p()‘k-i-l)

IN

o (k) = VDo) T (Vs = M) + 55 Aern = Ael|?

-D
an,p()‘*) - vAan,p()‘k)T(Ak—H - /\*) + ﬁ”)‘k—&-l - /\kH27

IN
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Ar). It follows that

14
where —D,, ,(A\*) > =Dy, ,(Ar) = VaDy, (k) T (A" —
Dy p(Mir1) < = Doy p(A*) = VaLn o (k15 Ae) T (A1 =A%) + 55l A1 — Al
- (v/\Dnmp()‘k) - VAﬁnk,p(Xk-&-la )‘k))T O\k—&-l - /\*)
= =Dy, p(X) — %(Ak+1 =) Nt = ) + 55 [ A = A)?
— (VoD p(Ak) = VL p (ki1 k) T (Akgr — A7)
< =Dy, (X)) — *(Akﬂ M) T Mgt = A) 4 o A = A?
VA0 (Ak) = VaLe,p(Kier1, M) [ A1 = A7
Dy o (N) A+ 25 (A = A% = [ Aer = A [?)
IVaADy, p(Ak) = VaLy,, p(Xk+1» M)A k41 = A"
< =Dy () (I lm 4+ 1) 8 + o5 (A = NP = [Aeer = A1)
- AT,

+IVADyyp(Ak) — Vkﬁmmp(karlv M) [ k+1
where the last inequality follows from Lemma 21. By invoking Lemma 3(iii)

7, and ||\i| + [|A*]| < By = By 4 2by, we obtain
—Dp(Ak41) < =Dp(A") + e ([[Arrallm + 1B + mi([|A"[[m + 1) 5
55 (A = A2 = A = X7%)
VAL p(Khg 15 M) [ Ak1 = A7
5 = A2 = Ak
- A"l

FIVaDay o (Ak) =
< —D,(\*) + ne(2Bxm + 1)8 + 5= - X%
FIVADn 0 (Ak) = VAL p(Kitrs Ak 1Ak 41
By summing from k = 0 to K — 1, dividing by K, and invoking the concavity

of D,,
—_ K_l ~
— (Dp(Ak) = £7) < g (Do = M2 = Ak = M2 + £ D me(@Bam + 1)
k=0
K—-1
+ 5 Y IVADa () = VL, p(Kern, M)l [ Aern — A7l

k=0

. K-1 5 _ K-1

< girlldo = X7|2 4 B 37 VRO | By S,
k=0 k=0

where boundedness of \j, follows from Lemma 3 and By, By, Bs are constants.
O

Next, we derive a rate statement on the infeasibility.

Proposition 32 [Rate on primal infeasibility]. Let{xy, A\x} be sequence
generated by (Sm-AL). Then the following holds for any K > 0, where
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B,C >0
K-1
€5 b B
d_(9(xk)) < % <\/2 - +mm6> 1/ 2+
=0

Proof. We have that g,, (Xx+1) can be expressed as
I (Xpe1) = VAL, p(Xk41, Ak) + (H, ()\T)k + G, (Xk+1)>) .
Recall that d_(u + v) < d_(u) + ||v]| for any u,v € R™. Consequently,

A (g (%1+1)) < [VaLp (rsr, M) |+ do (1 (25 4 gy (040) ) )

=0
= [IVALnep (kg1 Ae)]- 9)
By definition of d_ (), convexity of max{g;(e),0}, and ||ul2 < |lulli < v/m]ul2,
d_(9(xk)) = ulerg_ 9(Xk) —ull2 < ulelg_ 9(Xk) —ulli = _Z:luijngfowj(iK) — ;)
j=

K-1

= ma{g; (%600, 0} < & >3 max{g;(xi41), 0}

j=1 =0 j=1
K—-1 m K-1
S % ZmaX{gg i Xerl) +7716a0} - K Z lel]gm ‘gn Xz+1) +77l/81 _u”l
=0 j=1
K
< % H]gm f|‘gn7<xz+1)+nl 1—ullz = @Zd 9777 (Xit1) +n:81)
=0 k=1
K— 1 ) K-1
< vz (g (xi41) F1Bl11012) < YD (VAL (Xigr, M) + /i)
= =0
K-1
< Z IVALa o (Xit1 M) = VADy o (No) | + [IVADy, (M) || + v/mmi B).

=

(10)
Recall that
IVADy, . p(A) =V Ay, o (A2) | < 2 1@y, p (A1) = @npA2) 142 A = Al < 2[[A1 =Xz .
p p p

Since Dy, , is a (2/p)-smooth concave function, then by leveraging [29] for
any A > 0,

V3 Ps O < /2 (Pr() ~ Pos ) = 42 (Do)~ D) + 200085

< V2 (o) D00 5 200885) < T 0,00) D) + 2B
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where A} is a maximizer of D, ,. By leveraging the concavity of the square-

root function, the prior dual sub-optimality bounds, v/u + v < \/u + /v for
u,v > 0, the subaddivity of concave functions, we have from (10),

K-—1 K-—1
d_(g(xx)) < Y2 Y (\/ zanf mmﬁ) +2 3 20,00 - D, (0)
i =0

1=0
K-1 _
2 BB,
+ Km n > N
=0
(Coneavity of v7) K-l 2em? 2m 1 -
< N (B VmmB | |2 (D00 — £ Y D)
i=0 1=0
K-1
2n,8B
+ 7771 . p .
1=0
K-1
(Concavity of Dp(-)) 2¢; b
< S <\/7 + fmmﬁ> + ¢ 2 (Dy(Xy,) — Dy(Ak))
=0
K-1

S 2m S K T (2n:8B))

<K KZ_:_: (\/7+ \/Emﬁ> + \/27’” (D,(\) =D, (Ak)) + = ¢

We now derive a rate statement for the primal sub-optimality.

Theorem 31 [Rate on primal sub-opt]. Consider the sequence {xx, \x}
generated by (Sm-AL). Then (11) holds for any K > 0, where By, By, Cq >

0.
) ~ K—1

—(Bf r+17K/3’) <fEx)-<S+% kZ ey, +meB) . (11)
=0

Proof. Recall that since x; may not be feasible with respect to the constraints,
we derive upper and lower bounds on the sub-optimality.

(1) Lower bound. A rate statement for the lower bound is first constructed.
Since maxy D,(\) = Hgn L,(x,\*) = f*, the following sequence of inequalities

1 K-1 *
hold where Xi = % > Xk, fre = Hgn Lo.p (x,27,), and

* . *
X’ €argmin L X, A .
nK gxeX nK,p( ) nK)



A Smoothed augmented Lagrangian framework 17

‘ A =) ‘
T S Laneon 56 Np) = P (Ra) 8 (- (P2 4 g (51)) ) = 55 10,11

i) - Bl
P 2p nK

< o (i) + § (d (90 (%)) + |

+
= foe (Xx) + 5 (d (gnse (X))
)

)\:”{ H d_ (gnK (XK))
L e Ru) L (A (e R+ brnd (g (%K)

By invoking Proposition 32, we obtain the following inequality.

P = Foue(Ri) < B+ 22 (12)

Let x* € A" and x;,,_ is a minimizer of L, ,(-, Ay, ). By Lemma 3, it follows
that

f(X*) - f()_(K) = f(X*) - f(x;klx) J'_f(X;;K) - fTIK(X;k]K) +f"7K(X;;K) - an()_{K)
<0 <nkp (12)
+ fie (%) = f(Ri) < micB+ 2+ B2

<0

(ii) Upper bound. We begin by recalling that xj11 satisfies the following.
Loy p(Xnt1, Ak) — xméE Lo p(x, 1) < exny,
= Loy p(Xkt1, Ak) — ’anwp(xnk7>\7]k) < Eknk
Consequently, by invoking the definition of £,, ,(-, A\x), we have that

2

/\

o Gxie) — £, < 8 (d, (S 4 0, 050)) & (4 (2 + g0,

(1A, ||2*||>\k\|)
s((d "

p
+ ety + (IIA*‘II2 = ll?)

(003 vonsi)) " 0.3 s mimen)) 4

X, = Al (4 (25 + g (50 ) ) + el + 25 (105,12 = 1))

%’\H

%’\H

IA

We observe that
d—(u) = [T (u) = ul| = [T (u) = (T (u) + Iy () || = [[= 1T (w)|| = [ 4 (w)]] -
By choosing v = g, (Xg41) + %7 it follows that

Akt1

4 (gneenen) + 2 ) = || (g0, Gan) + 28 )| =

B2k 42 gg, (x) )>>2 - (d* (ATk +g’“«(x’“+1))>2)
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Furthermore, we have that

d (3 +on6)) < dlo(x))  + (%) =d (

= 0, since gn, (x}, ) <0

b‘g’

)

which implies
T Xiet1) = 1o,
<5 (0 (v ontin)) = (0. G2 o)) <3
1, = el (4 (25 + g0 055,)) ) +ent + 3 (100,12 = 1)
<‘ 2) I Pt W L [ Y1 ,

+ + €k
3 QI = Mel® + A1)

A:Ik - >\kH2

Ak
P

Akl
p

INA
rore

2
‘ 2p P k

+

< Ak 2 Apt1 2 T 1A, —/\k|\2 x5, =Xkl 212, =XelllAs, |
— 2 P P 2p P

Axy =MellP+2075 117 b

k Nk

+ 2p + €k

B e 2 Nein 2 n TN, =Xkl 42055 105 =il 4203, Lt
= 2 P P 2p ki

p A& 2 Ak41 2 7Bx1+2Bx 2bx,,+2b3 . b
SEAN =)t 5 o Tl (13)

where the last inequality holds since
A7 = Aell® = 11X, = A"+ X = Al < 20 Ag, = A2 + 2\, = A7 < 403 + 83 ,) + 283
[Ane = Akl S HAG = AT+ Ak = A7 < 2(bx +ba ) + Ba

and let B)\71 & 4(b§\ + bi,n) + 23?\ and BAQ = Q(b,\ + b)\ﬂ]) + B.
Summing from k£ = 0 to K — 1 and leveraging convexity of f,, and letting

Crp = 7BX’I+QBA22:A a2 , we obtain that
f&Xr)—f" < f (Xkt1) — f7)
K—1
< % f(Xpt1) fnk(xk+1)+f7lk(xk+l) f:;k Jrf;k *fnk(X*)Jr fnk(X*)*f*
k=0 <nB (13) <0 <0 (smoothing)
) K—1
<L <§ () —da.(22) )) + 23 (ewnh + Cop +mB)
k=0
K—1 i K—1
< 7% l15 Aoy L (exmp + Chrp +miB) < S+ & (exmp + Cxp + n13)

k=0 k=0
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where C~’1 > 0. O

3.3 Rate analysis under increasing py

We now consider the setting where {p;} is an increasing sequence.
Lemma 8 (Rate on primal infeasibility) Suppose {xj,Ar} is generated by

(Sm-AL). Then for any k > 0, d_ (g(xx+1)) < H% + mnS.

Proof. By the update rule, we have that
Aot = Ak + ok VAL, pp (k415 Ak) = A+ prgny, (Xet1) — pedl - (% + 9, (ka)) :

It follows that gy, (Xk41) = % +11_ (ﬂ + 9. (xk+1)), implying

d_ (gnk(xkﬂ)) <d_ (H, (% + G (karl )) + ‘ )\k+1 e || ‘ )\k+1 A
Akin to the proof in Proposition 32, we have
A= (9(xk11)) < d- (9, (x041)) + mne < 2222 | 4+ .

O

Proposition 33. (Rate on primal suboptimality) Suppose {xx, Ar} is gen-
erated by Sm-AL scheme. Then we have that

A I, =2ell? A
i — <| al? | 15, > < Flxin) = F* <mf+ I ¢ et

Proof. (i) Let fr £ fp, (x; ). We have that

A 2
:;ks%pk(xkﬂ,A;g:fnk<xk+1>+%€(df( 5t g (xes1) ) ) = g IXG 1P

2
< fo(xi11) + 4 (d (;k —Mglmogg, <Xk+1>)) e LA &
P A:Ik 2
< f”lk Xk-‘,—l 7 + 9ni Xk+1 i - ﬂ” Nk H
A A 2
= fnk X+1) % (H k+1” ‘ or T;k ) 2pk A "Ik||2
< f'flk(xk+1)+p7<||)‘k+1”2+ ||)‘k_/\:7k|| > (14)

By adding and subtracting f(xj, ), f;, and fy, (Xg+1), it follows that
= fxeg) = 7= f(xq,) + f(x3,) = fo,

<0 <miB
+ fnk f7]k (Xk+1) + fr)k (Xk—H) f(Xk+1) .

(14) <0
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A 2y =l
Consequently, we have that f(xp,11)—f(x*) > mﬁ(” ’“;;1” + —5 > .

(ii) Recall that xj41 satisfies the following that

‘Cmnpk (Xk?+17 )‘k) - ,I(%in ‘C’filmpk (X7 )‘k) < Ek?ﬁ;

e Em-,,p(karla)‘k:) - ‘Cle,P( nkv>‘* ) < 61@771[3;'

Moreover, since gy, (x*) < g(x*) < 0, we have that

fnk (Xk-i-l) - f;,kk
N

T <(d (% + I (x;’“))>2 - (d— (2*’; + gnk(xk+1))>2> + %

+ 12, - Aku (d (2 + ga(x5,)) ) + ewnl + 55 (125,17 = IA]?)

IN

2 A5 =g ? (1A%, =Xk
Pk )\k+1 H Nk k Nk k k b
=7 ( ) T Pk T €k Tk
1 2
2—(2|\/\ _)\k” + (|2 11%)
< b Akﬂ 2 + 1A, — =g l? 4 \lkf}k—/\kll HIIAL, =Rl
- 2 2pk Pk

4IA7, =Xell2 200, 112

7 b
+ —= ka + €xny,
< o A,M 2 n TlIAn, =Xk l2 4205 0 lIA;, = Akl 4203 ,
- 2 2pk,
< Pk )\k+1 2 + 7B>\,1+2BA,2b>\,n+2b§)n
— 2 2pk

= f(Xk+1) - fr= f(Xk+1) — fo Kkt1) + e (Kpo1) — ff;k + f;k — [ (x7)
<nxB <0

Az |I2+C
+ o (x7) = f < B+ PeLEO 4 g
N————

<0

where By1 £ 4(b3 + b3 ,) + 2B3 and By £ 2(bx + ba,) + By and Cy £
(7Br +2Bxbay +263,,)- O

We conclude with an overall rate for sub-optimality and infeasibility.

Theorem 32. Suppose {xx, A\r} is generated by (Sm-AL). Let n, = pik.

Then the following holds, where C'l, D are constants.

|f(kkg1) = £ < B+ 2 and d_ (g(xk41)) < mpBm + 250,
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Proof. Suppose pi, = poC* where ¢ > 1. Then we have that

1A%, )\kH

|f(Xp41) — f7] < max {Ukﬂ + ”Akp:l” + B + ”A’“gpfc* + 6kﬁZ}

2| Aot 1 175Nk 1241 AT, 117 +Cx
2pk

< B+ +exny, < 77k5+ Gt s <mB+

Next, we derive a rate on the expected infeasibility. Recall from Lemma 3,

9(Xk+1) < gy (Xkt1) + 1, implying that d_(g(xk41) < d—(gy, (Xrt1) +
1k B1). Therefore,

)\k+1—)\k +7]kﬁ||1H < nkﬂm"‘ 2C’1‘

d- (9(xk+1)) < d—(gny (Xk+1) + 1) < ‘

O

4 Overall Complexity Guarantees

In 4.1, we begin with some preliminaries, including the derivation of Lips-
chitzian properties for the smoothed AL function. This allows for employing
an accelerated gradient framework for inexact resolution of the subproblem,
leading to suitable complexity guarantees in 4.2 for convex and strongly con-
vex regimes. In 4.3, overall complexity guarantees for (Sm-AL) with a fixed
smoothing parameter are presented.

4.1 Preliminaries

We first derive L-smoothness of £, ,(e, A) uniformly in .
Lemma 9 For any 1,p > 0, A > 0, there exists C' such that £, ,(e,\) is

€2 _smooth.

Proof. Recall that L, ,(x,\) and its gradient V«L,, ,(x,\) are defined as

Loy 0) = Fy00)+ 5 (4 (3 +0,69)) = HIAP
Va3 X) = Vify(3) + 3,0 T (3 +9,() = 11 [3 + 9,(x)] ).

where (Jg(x))T £ [Vn1(%x) Vxgn2(X) ... Vignm(x)] and J4(x) denotes
the Jacobian matrix of g,(x). By Assumption 21 and Definition 1, g,, and Jy,
are bounded on X by M, and Mg, respectively. Since J, is bounded, g, is
Lipschitz continuous on X with constant L,. By Lemma 7, for all x;,x, € X,
it follows that

9L (361, A) = VoL (52, V| < [Vfy (1) = TSyl
03 60)T (3 + gax) = 11 [3 4 g401)] )

— 3y 0x2) " (24 gax2) = - [2 4 gn(x2)] )|
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Next we show that the second term is Lipschitz continuous in x. By adding
and subtracting _Jg(XQ)T (% + gp(x1) — I [% + gy (xl)} ), we have PZ com-

ment: not sure how to make the following inequalities prettier

3060 ™ (2 gax0) = 11 [2 4 gy (x1)] ) = Ty (x) T (2 + g (x2) = 11 [2 + gy (x2)] )|

< |60 T (3 + gax0) = - [2 4 gy(ox0)]) = Ty (x2) ™ (2 + 90x0) = - [2 + gy x0)]) |
[ 30x2)™ (3 gax) = - [2 4+ gy (x0)]) = Tgx2) T (2 + g0(x2) = I [2 4+ gy (x2)]) |

< 35c1) = Tyl |2 + g ox1) = 11 [ 3 + g, (x1)] |
-

13,0 o) = antoxo)l + |11 [3 + gatx0)] = 11- [3 + 0,000 )

non-expansive

< %“XI — Xo| (% t Mg)  Ma (2Ll =)

o]

Consequently, £, ,(x, ) is (%)—smooth by observing that

VL0 (%1, 2) = Ty plx2, M| < L lJx1 = x| + p (™02 (B + My ) +2MoLy )

n‘
X 1 = %] < S lxs = x|, where 9 > % 4 p (702 (B 4 M, ) +2MgLy),
and the last inequality holds if n < 1 and p > 1. O

The convexity and Lj-smoothness of L,, , (e, A;) for any non-negative
vector A\ allows for proposing an accelerated scheme for inexactly resolv-
ing the augmented Lagrangian subproblem. We formally state an acceler-
ated gradient method for resolving the augmented Lagrangian subproblem
(ALSub,, ,, (Ax)). In particular, we have

min Lnkapk (X7 Ak)' (ALsub"]k»Pk ()‘k))

xXeX
Suppose xj, denotes an optimal solution of (ALSub,,, ,, (Ax)). Since L., ,,. (8, Ax)
C'Pk
Nk
method that constructs a sequence {y;, z; };.Vﬁo as follows, where zg = yg = Xg.

Vi+1 = x [2j — BjVxLy, pi (25, Ak) | i 0
Zjy1 =Yi+1+7 Vit1 — Yj) ’

is a convex and -smooth function, we employ an accelerated gradient

(AG)

We now restate the convergence guarantees [5,28,29] associated with (AG).

Theorem 41. Suppose X is a convex and compact set where ||x —y| < B
for any x,y € X. Further, suppose £, ,, (®, \x) is a convex and Lg-smooth
function. Consider a sequence {y;,z;} generated by (AG) when applied to
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(ALSuby,, ,, (Ax))- .
(1) Suppose B =1/Li, a; = (1+(1+0af_1)/?)/2, and v; = {I=
where a1 = 0. Then L,, ,. (¥j+1, ) — Loy, o (X5, Ak) < Bj%’“ for any j > 0.
(ii) Suppose Ly, ,,(®, Ax) is a p-strongly convex and Ly-smooth function.

Suppose B; = 1/Ly, . and v; = \\?H for j > 0, where k; = Li/u for
k > 0. Then L, p (¥it1, M) — Lo pp (X5 M) < C(1 — \/77)] for j > 0,
where (Lo, p (X, AF) = Lo, o (X5, \F) + uB2/2) < C for any k.

4.2 Complexity guarantees for convex and strongly convex f

We begin by leveraging Theorem 41 to develop complexity guarantees in con-
vex settings for an e-optimal solution by leveraging the rate statement for
dual suboptimality (in constant penalty settings) and primal sub-optimality

(in increasing penalty settings). Throughout, we recall that AL subproblem
épk

objective is Lg-smooth, where Ly = and ||z —y|| < B for any z,y € X.
Additionally, complexity guarantees are derived by utilizing the rate guaran-
tees presented in Theorem 31 (Constant pg) or Theorem 32 (increasing pg)
to determine the number of outer iterations K; specifically, by these results,

to ensure e-suboptimal solutions, we require that X = [<] (constant p) or

K = [IHI;C(YC/)E)] (increasing py) for a suitable constant C'.

Theorem 42 [Overall complexity of Sm-AL]. Consider {(xj, A\;)} gen-
erated by (Sm-AL). Suppose pg,&,6 > 0, and b > 0.

(a) (Constant p). Let pr = po,nx = k~ (2+49) ser =1y "k~ (49 and

M, = {(Bép0)1/2k2(1+5)—‘ for £k > 0. Suppose ()’(K, S\K) satisfies f* —

D(Ak) < € where kg = Y x;/K and Ax = So1e \/K. If K(e) =[],
then the overall iteration complexity of computing such an Xy satisfies
ZK(s) M, <O (,__. (3+5))

(b) (Geometrically increasing pr). Let pr = poC*,mp = pikk‘_@""s),ek =
P L k=(@+9) and M, = [ Bépi/2k2+6i‘ for all k > 0, where ¢ > 1. Suppose
(xk, \i) satisfies |f* — f(xk)| < e. If K(e) = fln C/E ], then the overall

iteration complexity of computing such an X satisfies Z P (s) My, < O(e™%).

Proof. (a) By Theorem 41, Mj, is the smallest integer satisfying

BL BC b
Eﬂkﬂ?k (ka>‘k) 7£Pk-a77k (X1§7>‘k) < ( M2k> = (%71\5;?) < €k

k

= M= { 635&)1 = {(\/ Bép()) k2(1+5)-‘-
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Then the iteration complexity of computing a (X, A\x’) where f* —D(\g) < €
requires

K(e) [C/el
S = Y K\/Bé@ k2(1+5)-‘ -0 ().
k=1

k=1

(b) Proceeding similarly, by Theorem 41, M}, is defined as follows.

Mk{ By, { /WWK’EC)P?WH]
© K k

Then the iteration complexity of producing an xf satisfying | f* — f(xx)| < €
requires

K(e) I € /Inc] ) in ()41
Z M, = Z [(\/Bié) pgk(ﬂ(;)—‘ < 2(«/35«) ol 3k p(2H0)
k=1 k=1 k=1

<2(VBO) g (T (€) +17)""*" /1n< " <0 (=)

We now produce an extension of the results for strongly convex settings.

Theorem 43 [Overall complexity of Sm-AL for strongly convex f].
Suppose f is p-strongly convex on X. Consider a sequence {(xx, A\x)} gener-
ated by (Sm-AL). Suppose pg, €, > 0, and b > 0.

— €k _ _ 1.—(249)
(a) (Constant p). Let M) = 1n< e > s P = Po, Mk = k ;

= i
and €, = nk_bk_(2+6) for all & > 0, where § > 0. Suppose ()‘cK, )\K) satis-
fies f* — D(A\g) < € where Xx = (Zfil x;)/K and \g = (Zfil \i)/K.
If K(e) = f%}, then t~he overall iteration complexity of computing an X
satisfies Z,If:(? M, <0 (%).

In 5;961’717 5
—— i | | ok = poct,
n(725277)
ne = pr k=) and e = pp ' Pk~ for k > 0, where §,p > 0, > 1.

Suppose (xx, Ag) satisfies | f* — f(xg)| < e. If K(g) = (lnlglc(c/)s)], then the

overall iteration complexity of computing an X i satisfies ZkK:(;:) M, <O (é) .

(b) (Geometrically increasing py ). Let My, =

Proof. (a) Suppose pi = po for all k. Suppose My, represents the least number
of steps taken at step k to achieve (exn?)-optimality of the subproblem. By
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Theorem 41 and In(z) > 2L for z > 0,

- My,
‘Ckank (Xka /\k) - 'Cplmnk (Xk*a /\k) <C (1 - ) < ﬁknlg

VI
B In(CECT9)) 1 A7 (246) A O1/(249)
— M, = m <2[ A= (€0 )], where ¢ = € .
Vo

Consequently, since K (e) = [C/e] outer steps are required, the overall com-
plexity is

K(e) [C/e] [C/e B+ in(Ch
> M= 3 2|t (OK) | < ) [HMER] < 0 (i (1))
k=1

(b) Consider pj, = po¢* where k > 0 and ¢ > 1. Proceeding as in (a) and by
Theorem 41 and In(z) > =1 for z > 0,

~ My,
‘C’Pkmk (ka )‘k) - [’Pkmk (X/f*’ )‘k) <C (1 - \/%) < 51@'7712

C - - -
M, — In 5;&72) < ln(Ck(2+5)pk) < 2‘/pk1n(kak(2+d))
k= ln( N ) = VIi—i = Wk )
VIi—VR VI

Consequently, if K(e) = [In(C/e)/In(¢)] = [In¢(C/e)] outer steps are em-
ployed, then the overall complexity can be bounded as follows.

K(e) ECCI.
_ Pk ~11.(2+9)
S M= Y 2[mln(pk0k ﬂ
k=1 k=1
fing(C/e)] )
< Y G [pkM 0 (pCrE )]
k=1

< poc <@/ ([In(C/e)) ™+ In (pug (/A E ([ng(/e))) )
<o(1).

O

Remark 1 Sm-AL is designed for convex problems with nonsmooth non-
linear convex constraints, achieving an overall complexity of o (6_3/ 2) under
geometric growth of pg, slightly worse than the best known complexities for
contending with smooth nonlinear constraints (cf. [23,40]), i.e. O(e~!) (upto
log. terms).
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4.3 Complexity Analysis for (Sm-AL) with fixed 7

Next, we apply (Sm-AL) to (NSCopt,) with a fixed and appropriately chosen
n with the overall goal of finding an (Xx, Ax) such that either dual subop-
timality is sufficiently small, i.e. f; — D,0(Ax) < € (constant py = pg) or
primal suboptimality is sufficiently small |f,(xx) — f;| < € (geometrically
increasing pg).

(a) (Constant p) Suppose 1 < ¢e, where ¢ needs specification. After K steps
in (Sm-AL), fr - Dyo(Ak) < £, where K = [%1 for a suitable C. However,
by Lemma 1,

F(x*) =Do(Ak) < fy(x*) + 18— Dpo(Ax) + n(|Axllm + 1)

< fulx3) — Dn,o(ij) +n (ﬁ(BAm—i— 2)) < e.
€ A Summmad
2 <

%

<

N|m

a Q 1Q aQ 3 < €_ .
To ensure that the second term is less than €/2, we select 1 < 2@ Bom)

(b) (Geometrically increasing py). Proceeding similarly, suppose n < ¢e, then
by taking K steps in (Sm-AL), |f,(xk) — f;| < &, where K = [<] for a

suitable C'. Consequently, we have that if n < %, we have that f(xx)—f* <e.

fx) = 7 < foxk) = fo(x7) +08 < folxkx) — fu(x;)+ 08 < e
N A

[SIfU)
IN
N

Similarly, if n < 55, f*—f(xk) < e, implying that if n < 33 lf(xx)—f*| <e.

Proposition 41 [Complexity analysis of AL for n-smoothed convex
problems]. Consider a sequence {(xx, Ax)} generated by (Sm-AL). Suppose
po,€ > 0.

a.) (Constant p). Let pp = po, e = k=9 5 = and
Y o). Let pi = p :

e
2(B(2+Bam))’
My, = [\/%klw—‘ for k > 0, where 6 > 0. Suppose (X, A\x) satisfies f* —
D(Ak) < € where X = Y5 %;/K and A = Y1, \i/K. Let K(e) = 1o

(>4
where C' is a constant. Then the overall iteration complexity of computing
such Xy satisfies Zf:(? My, < (’)(s_(%+5)).

(b.) (Geometrically increasing pi.) Let pr = poCF,ex = pj 'k~ (+%)

N =35
and M = L/BSZ’“ICH‘S for all £ > 0 where d,p9 > 0,7 > 1. Suppose

(XK, A\k) satisfies |f* — f(xk)| < e. Let K(e) = In(C/e)/In(¢) where C
is a constant. Then the overall iteration complexity of computing such Xg
satisfies Zf:(i) M;, < O(e™3).
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Proof. (a.) By Theorem 41, M, is the smallest integer satisfying

BLy, BC
Lo (% M) = Lpen(xis M) < (55 ) < (2582 <

— 0 = /20| = [ (V2BC (32 + Bam/e) 7] = [(VDTe].

Then the complexity of computing a (X, Ax) where f*—Dy(Ak) < € requires

K(e) [C/e]
Z Mk = Z [(\/Dpo/e) k1+6—‘ =0 (6_(%+6)) .
k=1 k=1

(b) Proceeding as in (a) and by invoking Theorem 41,

e [V - [ - ]

Then the iteration complexity of producing an xx satisfying |f — f(xz)| < e
leads to the following bound, where C, D > 0.

K(e) [In €/1n¢] In¢ (£)+1
Z My = Z K\/D/s) pkki(l_‘—é)_‘ <2 (\/D/s) 00 Z ¢kp(+o)
k=1 k=1 k=1

11’1< (Q +2

<)

<o (D78} () 1 [

Cldu < O (e*%) .
0

Remark 2 We observe that the complexity guarantees are close to those for
diminishing 7 with a slight improvement in the constant py regime. We recall
that Nesterov [30] and Beck and Teboulle [6] adopted different smoothing
techniques with fixed 1 to get an e-optimal solution within O(1/e). When
compared to these smoothing schemes in [30,7], Sm-AL targets problems
with nonsmooth constraint functions. Moreover, Sm-AL accommodates both
fixed and varying 7, with an effective complexity rate O(e~3/2), matching the
complexity of a smoothed penalized scheme [3].

2 summarizes rate and complexities for S-AL, S-AL(n), S-AL(S), and
N-AL where (a). Sm-AL is smoothed ALM for convex problems; (b). Sm-
AL(n) is n-smoothed ALM; (¢). Sm-AL(S) is Sm-AL for strongly convex
problems; (d). N-AL is original ALM for nonsmooth problems.



28 Peixuan Zhang et al.

Table 2 Rates & Complexity

Pl = PQ Pl = POCk
f(xp) — £(x5) d_(9(%)) | ComplexityT ) — F(x*) d_(g9(%;)) | Complexity*
Sm-AL @) \/71? o # o (e—<3+5)) o i o i o (e_3/2)
Sm-AL(S) o TIK o # 1) (s—<2+5)) o i o i 16) (s—l)
N-AL o 71? o \/L? o (s*(f’*‘”) @) i o i o (5*4)
Sm-AL () ‘ o(ﬁ) O(ﬁ) ‘ o(g*(5/2+5))‘ O(i) O(i) ‘ 6 («—3/2) ‘

T: Dual suboptimality % : Primal suboptimality or Primal infeasibility

5 Numerical Experiments

In this section, we apply (Sm-AL) on a fused lasso problem with datasets
{X;, yl}f\il where X; is the d-dimensional feature vector for ith instance and
y; is the corresponding response. Consider the 7-smoothing of (1).

: Y — XT 2
min | el

subject to Z (y/ﬁ? + 12— 77) < C’l,z (\/(ﬂj —Bj—1)?2+n? — 77) < Cs.

J J

We conducted the experiments on simulated datasets with dimensions of
ranging from 5 to 1000. The results are shown in the 5. The optimal solutions
for each experiment are obtained by using fmincon in Matlab. In 5, we compare
the results from Sm-AL with those from N-AL. Both Sm-AL and N-AL
terminated at 50 outer iterations except that n = 1000 case for Sm-AL was
stopped at the 30th outer iteration to save time. N-AL was terminated when
the overall runtime exceeded two hours for higher dimensional problems. In
all cases, Sm-AL outperforms N-AL with respect to primal suboptimality
and overall runtime. Next, we compare the results from Sm-AL with AL on
an n-smoothed problem for a single instance (n = 5). We observe that such
fixed-smoothing avenues provide relatively coarse approximations compared to
their iteratively smoothed counterparts. Finally, we compare empirical rates
of Sm-AL in two settings of pj for a smaller problem (n = 5) in terms of
primal suboptimality in 1 and observe alignment with the theoretical rates
represented blue lines.

6 Conclusion

In this paper, we develop a smoothed AL scheme for resolving convex programs
with possibly nonsmooth constraints and provide rate and complexity guar-
antees for convex and strongly convex settings under constant and increasing
penalty parameter sequences. The complexity guarantees represent significant
improvements over the best available guarantees for AL schemes applied to
convex programs with nonsmooth objectives and constraints. A by-product
of our analysis develops a relationship between saddle-points of n-smoothed
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Table 3 Numerical results

[ [ parameters [ Sm-AL [ N-AL |
[n T e [ m St [ F-—y"Td@ | Times [ F—s* [ d(g [ Times) |
5 0.1 k=201 T jet0| 4.35e—5| 3.84c—4 8.00e—1 3.056—4 0.00e+0 1.02¢43
1.01% ﬁ—wl_ I Se+2| 3.37e—4| 0.00e+0 1.68e+0 1.36e—4 | 0.00e+0 3.52e+3
10 0.1 k=201 1 jeto| 2.99e—5| 8.12¢—4 1.03e40 2.92¢—5 1.40e—3 3.70e+3
1.01% ‘klm 5e+2| 3.13e—5| 2.46e—4 1.79e+0 3.10e—5 0.00e+0 1.05e+4
P k2"
20 0.1 k=201 T jet1| 3.50e—5| 0.00e40 4.59e+0 3.49e—5 0.00e+0 1.70e+4
1.01% ‘klm 8e+2| 3.49e—5| 0.00e+0 7.05e+0 3.49e—5 0.00e+0 6.36e+4
P k2"
0.1 k=200 [ geq1| - 0.00e+0 1.10e+1 2.0le—1 0.00e+0 > 7.2e4+3
50
4.98e—6
1.01k Tklﬂﬁ le+3| 7.00e—5 | 0.00e+0 1.69e+1 4.42e—2 0.00e+0 > 7.2e+3
100 | 01 k=201 1 6et1| 6.10e—6 | 0.00e40 3.60e+1 5.82¢+2 0.00e+0 > 7.2e+3
1.01F ﬁz_ﬁr le4+3| 6.21e—6 | 1.90e—4 7.00e41 3.40e+3 0.00e40 > 7.2e43
200 | 01 k=201 [ jeq2| 3.71e—5| 0.00e40 8.40e+1 2.44e+3 0.00e+0 > 7.2e+3
1.01k W le+3| 3.56e—5 | 0.00e+0 2.19e42 2.32¢+4 0.00e+0 > 7.2e+3
0.1 k=200 [ eys]| - 0.00e+0 8.48e+2 9.41e+3 0.00e+0 > 7.2e+3
1000 4
.34e—5
okl — L deta]| - 0.00e+0 1.22¢43 4.75e+3 0.00e+0 > 7.2e+3
PRk 4.93e—5
5 0.1 0.1 Te+0| 6.726+2 | 0.00e+0
1.01%| 0.1 5e4+2| 8.70e—1| 0.00e+0
5 0.1 0.01 Te+0| 1.90e—3 | 0.00e+0
1.01%| 0.01 5¢4+2| 9.10e—3 | 0.00e+0
5 0.1 0.001 Te+0| 1.00e—3 | 0.00e+0
1.01%| 0.001 5e+2| 6.00e—4 | 0.00e+0
t: the subproblem £y, 5, (x, A) is (C,—"pk/nk>fslnooth
Constant p Geometrically increasing p,
T
0 N
E ST e e sasan, Sees
s
-
S
- R
S = |
o g 3
5 3
N
“"“‘“‘“‘“‘%n__
s -
Sy,
“‘::“v\““““\
a,,
-10 -10 L LS VOOV YOVISVIVIVIVEY
o o5 1 s 2 25 s . P

Outer Iteration (log(K)

Outer Iteration (<)

Fig. 1 Primal subopt. for fused lasso problems for constant (L) and increasing px (R)

problems and 7-saddle points of our original problem. We believe that our
findings represent a foundation for considering extensions to compositional
regimes with expectation-valued and possibly nonsmooth constraints.
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